Share Email Print
cover

Proceedings Paper

2D electronic materials for army applications
Author(s): Terrance O'Regan; Philip Perconti
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

Paper Details

Date Published: 22 May 2015
PDF: 6 pages
Proc. SPIE 9467, Micro- and Nanotechnology Sensors, Systems, and Applications VII, 94670S (22 May 2015); doi: 10.1117/12.2178401
Show Author Affiliations
Terrance O'Regan, U.S. Army Research Lab. (United States)
Philip Perconti, U.S. Army Research Lab. (United States)


Published in SPIE Proceedings Vol. 9467:
Micro- and Nanotechnology Sensors, Systems, and Applications VII
Thomas George; Achyut K. Dutta; M. Saif Islam, Editor(s)

© SPIE. Terms of Use
Back to Top