Share Email Print
cover

Proceedings Paper

Breadboard sized photo-acoustic spectroscopy system using an FPGA based lock-in amplifier
Author(s): John F. Schill; Paul M. Pellegrino; Ellen L. Holthoff; Mark M. Giza
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Over the past several years we have developed a photo-acoustic spectroscopic (PAS) technique for trace gas detection that is capable of parts per trillion (ppt) detection limits. The desire to reduce the size of the system has led to several efforts that have reduced the size of the various components of the system. We have reduced the dimensions of the resonant cell to micrometer scale (MEMS). We have worked with Daylight Solutions to reduce the size of the tunable quantum cascade laser (QCL) used in the system. In this paper we demonstrate the reduction in size of the entire system to a 12” x 12” footprint. We do this by implementing the lock-in amplifier on a field programmable gate array (FPGA) demonstration board that is also capable of acting as the system controller and data output device. We briefly describe the digital lock-in amplifier and sketch our implementation on the FPGA. We go on to compare the spectroscopic data we collected using this system with data we collected using a large rack mounted Stanford Research Systems SR830 lock-in amplifier and a PC.

Paper Details

Date Published: 22 May 2015
PDF: 9 pages
Proc. SPIE 9455, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI, 94550Z (22 May 2015); doi: 10.1117/12.2178160
Show Author Affiliations
John F. Schill, U.S. Army Research Lab. (United States)
Paul M. Pellegrino, U.S. Army Research Lab. (United States)
Ellen L. Holthoff, U.S. Army Research Lab. (United States)
Mark M. Giza, U.S. Army Research Lab. (United States)


Published in SPIE Proceedings Vol. 9455:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI
Augustus Way Fountain, Editor(s)

© SPIE. Terms of Use
Back to Top