Share Email Print
cover

Proceedings Paper

Effective application of optical sensing technology for sustainable liquid level sensing and rainfall measurement
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Rainfall measurement is performed on regular basis to facilitate effectively the weather stations and local inhabitants. Different types of rain gauges are available with different measuring principle for rainfall measurement. In this research work, a novel optical rain sensor is designed, which precisely calculate the rainfall level according to rainfall intensity. This proposed optical rain sensor model introduced in this paper, which is basically designed for remote sensing of rainfall and it designated as R-ORMS (Remote Optical Rainfall Measurement sensor). This sensor is combination of some improved method of tipping bucket rain gauge and most of the optical hydreon rain sensor’s principle. This optical sensor can detect the starting time and ending time of rain, rain intensity and rainfall level. An infrared beam from Light Emitting Diode (LED) through powerful convex lens can accurately determines the diameter of each rain drops by total internal reflection principle. Calculations of these accumulative results determine the rain intensity and rainfall level. Accurate rainfall level is determined by internal optical LED based sensor which is embedded in bucket wall. This internal sensor is also following the total internal reflection (TIR) principle and the Fresnel’s law. This is an entirely novel design of optical sensing principle based rain sensor and also suitable for remote sensing rainfall level. The performance of this proposed sensor has been comprehensively compared with other sensors with similar attributes and it showed better and sustainable result. Future related works have been proposed at the end of this paper, to provide improved and enhanced performance of proposed novel rain sensor.

Paper Details

Date Published: 5 May 2015
PDF: 6 pages
Proc. SPIE 9506, Optical Sensors 2015, 95060H (5 May 2015); doi: 10.1117/12.2177983
Show Author Affiliations
Muhammad Hassan Bin Afzal, Univ. of Dhaka (Bangladesh)


Published in SPIE Proceedings Vol. 9506:
Optical Sensors 2015
Francesco Baldini; Jiri Homola; Robert A. Lieberman, Editor(s)

© SPIE. Terms of Use
Back to Top