Share Email Print
cover

Proceedings Paper

Single-wavelength lidar retrieval algorithm of particulate matter concentration using CELiS (compact eyesafe lidar system) a 1.5 μm elastic lidar system
Author(s): Alan W. Bird; Kori D. Moore; Michael Wojcik; Robert Lemon
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

CELiS (Compact Eyesafe Lidar System) is an elastic backscatter light detection and ranging (lidar) system developed for monitoring air quality environmental compliance regarding particulate matter (PMk) generated from off-road use of wheeled and tracked vehicles as part of the SERDP (Strategic Environmental Research and Development Program) Measurement and Modeling of Fugitive Dust Emission from Off-Road DoD Activities program. CELiS is small, lightweight and easily transportable for quick setup and measurement of PMk concentration and emissions. CELiS operates in a biaxial configuration at the 1.5μm eyesafe wavelength with a working range of better than 6 km and range resolution of 5 m. In this paper, we describe an algorithm that allows for semi-quantitative PMk determination under a set of guiding assumptions using a single wavelength lidar. Meteorological and particle measurements are used to estimate the total extinction (α) and backscatter (β) at a calibration point located at the end range of the lidar. These α and β values are used in conjunction with the Klett inversion to estimate α and β over the lidar beam path. A relationship between β, α and PMk mass concentrations at calibration points is developed, which then allows the β and α values derived to be converted to PMk at each lidar bin over the lidar beam path. CELiS can be used to investigate PMk concentrations and emissions over a large volume, a task that is very difficult to accomplish with typical PMk sensors.

Paper Details

Date Published: 19 May 2015
PDF: 9 pages
Proc. SPIE 9455, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI, 94550E (19 May 2015); doi: 10.1117/12.2177049
Show Author Affiliations
Alan W. Bird, Utah State Univ. (United States)
Kori D. Moore, Utah State Univ. (United States)
Michael Wojcik, Utah State Univ. (United States)
Robert Lemon, Utah State Univ. (United States)


Published in SPIE Proceedings Vol. 9455:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI
Augustus Way Fountain, Editor(s)

© SPIE. Terms of Use
Back to Top