Share Email Print
cover

Proceedings Paper

Functions of multiple instances for sub-pixel target characterization in hyperspectral imagery
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, the Multi-target Extended Function of Multiple Instances (Multi-target eFUMI) method is developed and described. The method is capable of learning multiple target spectral signatures from weakly- and inaccurately-labeled hyperspectral imagery. Multi-target eFUMI is a generalization of the Function of Multiple Instances approach (FUMI). The FUMI approach differs significantly from standard Multiple Instance Learning (MIL) approach in that it assumes each data is a function of target and non-target “concepts.” In this paper, data points which are convex combinations of multiple target and several non-target “concepts” are considered. Moreover, it allows both “proportion-level” and “bag-level” uncertainties in training data. Training data needs only binary labels indicating whether some spatial area contains or does not contain some proportion of target; the specific target proportions for the training data are not needed. Multi-target eFUMI learns the target and non-target concepts, the number of non-target concepts, and the proportions of all the concepts for each data point. After learning the target concepts using the binary “bag-level” labeled training data, target detection can be performed on test data. Results for sub-pixel target detection on simulated and real airborne hyperspectral data are shown.

Paper Details

Date Published: 21 May 2015
PDF: 8 pages
Proc. SPIE 9472, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, 947212 (21 May 2015); doi: 10.1117/12.2176889
Show Author Affiliations
Alina Zare, Univ. of Missouri-Columbia (United States)
Changzhe Jiao, Univ. of Missouri-Columbia (United States)


Published in SPIE Proceedings Vol. 9472:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI
Miguel Velez-Reyes; Fred A. Kruse, Editor(s)

© SPIE. Terms of Use
Back to Top