Share Email Print
cover

Proceedings Paper

Composite multi-lobe descriptor for cross spectral face recognition: matching active IR to visible light images
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Matching facial images across electromagnetic spectrum presents a challenging problem in the field of biometrics and identity management. An example of this problem includes cross spectral matching of active infrared (IR) face images or thermal IR face images against a dataset of visible light images. This paper describes a new operator named Composite Multi-Lobe Descriptor (CMLD) for facial feature extraction in cross spectral matching of near-infrared (NIR) or short-wave infrared (SWIR) against visible light images. The new operator is inspired by the design of ordinal measures. The operator combines Gaussian-based multi-lobe kernel functions, Local Binary Pattern (LBP), generalized LBP (GLBP) and Weber Local Descriptor (WLD) and modifies them into multi-lobe functions with smoothed neighborhoods. The new operator encodes both the magnitude and phase responses of Gabor filters. The combining of LBP and WLD utilizes both the orientation and intensity information of edges. Introduction of multi-lobe functions with smoothed neighborhoods further makes the proposed operator robust against noise and poor image quality. Output templates are transformed into histograms and then compared by means of a symmetric Kullback-Leibler metric resulting in a matching score. The performance of the multi-lobe descriptor is compared with that of other operators such as LBP, Histogram of Oriented Gradients (HOG), ordinal measures, and their combinations. The experimental results show that in many cases the proposed method, CMLD, outperforms the other operators and their combinations. In addition to different infrared spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated in this paper. Performance of CMLD is evaluated for of each of the three cases of distances.

Paper Details

Date Published: 22 May 2015
PDF: 13 pages
Proc. SPIE 9476, Automatic Target Recognition XXV, 94760T (22 May 2015); doi: 10.1117/12.2176462
Show Author Affiliations
Zhicheng Cao, West Virginia Univ. (United States)
Natalia A. Schmid, West Virginia Univ. (United States)


Published in SPIE Proceedings Vol. 9476:
Automatic Target Recognition XXV
Firooz A. Sadjadi; Abhijit Mahalanobis, Editor(s)

© SPIE. Terms of Use
Back to Top