Share Email Print
cover

Proceedings Paper

Space-time processing with photorefractive volume holography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photorefractive volume holography for processing ultrashort optical pulses carrying spatial, temporal, and spatio-temporal optical information is introduced. These new holographic methods can process 4-dimensional information that in addition to the 3 spatial coordinates also include the temporal evolution of optical signals on nanosecond to femtosecond scale. Photorefractive volume holographic materials provide the medium necessary for recording and reconstruction in real-time. Applications of direct time domain and spectral domain holography for image processing, temporal matched filtering, optical pulse shaping, 3-D optical storage, and optical interconnects are discussed. Furthermore, the combined space-time holographic processing that allows the conversion between spatial and temporal optical information carrying channels is introduced. This method is used to demonstrate experimentally parallel-to-serial and serial-to-parallel data conversion for 1-D images and image-format data transmission. This holographic processor provides the advantages of self- referenced signal transmission and self-compensation for optical dispersion induced by the holographic materials, communication channel, as well as other optical components. Finally, future research directions for optical information processing with complex spatio-temporal signals are identified and discussed.

Paper Details

Date Published: 18 August 1995
PDF: 14 pages
Proc. SPIE 2529, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, (18 August 1995); doi: 10.1117/12.217003
Show Author Affiliations
Pang Chen Sun, Univ. of California/San Diego (United States)
Yeshaiahu Fainman, Univ. of California/San Diego (United States)
Yuri T. Mazurenko, Univ. of California/San Diego (United States)
David J. Brady, Univ. of Illinois/Urbana-Champaign (United States)


Published in SPIE Proceedings Vol. 2529:
Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications
Francis T. S. Yu, Editor(s)

© SPIE. Terms of Use
Back to Top