Share Email Print
cover

Proceedings Paper

Periodic-pulse TEA lasers based on inert gases: energetic properties and pulse repetition rate
Author(s): Boris Aleksejevich Kozlov; D. I. Ponomaryov; V. I. Solovjov
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Many applications ofthe pulsed IR-lasers are based on the irradiation selective effect on the molecular bonds ofthe chemical compounds [1-3]. In the near JR-region lasers based on the neutral inert gases atoms transitions have the most wide wavelengst set [4-5]. The practical applications of such lasers are defined by the average irradiation power level. The highest irradiation power values are achieved in the TEA-lasers with the Xe:He mixtures2-4 watts from the active volume Va =1,2 dm3 and hundreds ofrnilliwatts from V=50 cm3 [6,7]. In lasers of high pressure energy properties of the irradiation pulse and the pulses repetition rate are limited by the phenomena ofthe volume discharge degeneration to the local one, which is not applicable for the pumping purpose [6,7]. For the present time there are established mechanisms ofthe populating ofthe inert gases atoms working levels in the volume discharge plasma and main general rules of the volume discharge forming in dense gases [5-8]. The less studied questions are related with characteristic properties of the stable volume discharge forming in the pulsed-periodical regime. The present work is denoted to the study of how volume dischar ge forming conditions effects (such as pre-ionizator geometry, start ionization level, pulsed pumping generator and discharge gap properties matching ) on the volume discharge repeti tion-rate and on the average irradition power level in TEA-lasers based on Xe:He Kr:He and Ar:He mixtures.

Paper Details

Date Published: 23 August 1995
PDF: 6 pages
Proc. SPIE 2619, International Conference on Atomic and Molecular Pulsed Laser, (23 August 1995); doi: 10.1117/12.216928
Show Author Affiliations
Boris Aleksejevich Kozlov, Radio Engineering Academy (Russia)
D. I. Ponomaryov, Radio Engineering Academy (Russia)
V. I. Solovjov, Radio Engineering Academy (Russia)


Published in SPIE Proceedings Vol. 2619:
International Conference on Atomic and Molecular Pulsed Laser
Victor F. Tarasenko; Georgy V. Mayer; Gueorgii G. Petrash, Editor(s)

© SPIE. Terms of Use
Back to Top