Share Email Print
cover

Proceedings Paper

Optical nonlinearities in carbon black particles
Author(s): Kamjou Mansour; Eric W. Van Stryland; M. J. Soileau
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have characterized the nonlinear optical properties of carbon black particles in liquids and layers deposited on glass. We find that the limiting is dependent on the energy density (fluence) and that the material changes from a linear absorber to a nonlinear scatterer for fluence levels 0.2 J/cm2 and 0.38 J/cm2 for 0.532 jim, 14 ns and 1.064 pm, 20 ns laser pulses respectively. In this paper, we will discuss the possible mechanisms that have been proposed to explain the nonlinear scattering. These mechanisms are plasma formation, micro-bubble formation and change in index of refraction of the liquid surrounding the particles. We will show through a series of experiments that plasma formation is consistent with all of the experimental results while bubble formation may influence the limiting behavior at fluence levels substantially above the limiting threshold. In this model, the microscopic carbon particles are heated by linear absorption to a temperature at which a plasma can be created by the optical field. These microplasmas rapidly expand, thus scattering the incident light and limiting the transmittance.

Paper Details

Date Published: 1 October 1990
PDF: 13 pages
Proc. SPIE 1307, Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, (1 October 1990); doi: 10.1117/12.21684
Show Author Affiliations
Kamjou Mansour, CREOL/Univ. of Central Florida (United States)
Eric W. Van Stryland, CREOL/Univ. of Central Florida (United States)
M. J. Soileau, CREOL/Univ. of Central Florida (United States)


Published in SPIE Proceedings Vol. 1307:
Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors
Rudolf Hartmann; M. J. Soileau; Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top