Share Email Print

Proceedings Paper

Dynamic adaptivity of "smart" piezoelectric structures
Author(s): Horn-Sen Tzou; Jianping P. Zhong
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Active smart" space and machine structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g., flexible robots, flexible space structures, "smart" machines, etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilizing the converse piezoelectric effect. A mathematical model is proposed and the electrodynamic equations of motion and the generalized boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The dynamic adaptivity of the structure is introduced using a feedback control system. The theory is demonstrated in a case study in which the structural adaptivity (natural frequency) is investigated.

Paper Details

Date Published: 1 October 1990
PDF: 11 pages
Proc. SPIE 1307, Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, (1 October 1990); doi: 10.1117/12.21667
Show Author Affiliations
Horn-Sen Tzou, Univ. of Kentucky (United States)
Jianping P. Zhong, Univ. of Kentucky (United States)

Published in SPIE Proceedings Vol. 1307:
Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors
Rudolf Hartmann; M. J. Soileau; Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top