Share Email Print
cover

Proceedings Paper

Removal of dust particles from metal-mirror surfaces by excimer-laser radiation
Author(s): Klaus R. Mann; B. Wolff-Rottke; F. Mueller
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser-induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width, and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.

Paper Details

Date Published: 14 July 1995
PDF: 11 pages
Proc. SPIE 2428, Laser-Induced Damage in Optical Materials: 1994, (14 July 1995); doi: 10.1117/12.213732
Show Author Affiliations
Klaus R. Mann, Laser-Lab. Goettingen (Germany)
B. Wolff-Rottke, Laser-Lab. Goettingen (Germany)
F. Mueller, Laser-Lab. Goettingen (Germany)


Published in SPIE Proceedings Vol. 2428:
Laser-Induced Damage in Optical Materials: 1994
Harold E. Bennett; Arthur H. Guenther; Mark R. Kozlowski; Brian Emerson Newnam; M. J. Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top