Share Email Print
cover

Proceedings Paper

Optical determinations of energy-band dispersion curves in novel compound semiconductor materials
Author(s): Eric D. Jones
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present magnetoluminescence data which provides a quantitative measure of the energy- band dispersion curves of novel compound semiconductor optoelectronic materials. Data for a n-type strained-layer InGaAs/GaAs (quantum-well width approximately 8 nm) and a n-type 4.5 nm-wide GaAs/AlGaAs lattice-matched single-quantum well are presented. We find that the conduction-bands are almost parabolic, with a mass of about 0.068m0 for the GaAs/AlGaAs structure. The valence-bands are nonparabolic with wave vector dependent in- plane valence-band masses varying from about 0.1m0 at zone center to about 0.3m0 for 20 meV energies.

Paper Details

Date Published: 19 June 1995
PDF: 9 pages
Proc. SPIE 2399, Physics and Simulation of Optoelectronic Devices III, (19 June 1995); doi: 10.1117/12.212525
Show Author Affiliations
Eric D. Jones, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 2399:
Physics and Simulation of Optoelectronic Devices III
Marek Osinski; Weng W. Chow, Editor(s)

© SPIE. Terms of Use
Back to Top