Share Email Print
cover

Proceedings Paper

High-efficiency interferometer for noncontact detection of ultrasounds
Author(s): Robert Czarnek; Chin-Jye Yu; F. Robert Dax
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Semi-solid metalworking (SSM) incorporates elements of both casting and forging for the manufacture of near-net shape discrete parts. The SSM process capitalizes on thixotropy, a physical state wherein a partially molten material behaves like a fluid when a shear stress is applied. Effective process control depends on the accurate measurement of the ratio between solid and liquid in the feedstock. Due to the high temperature of the material, only noncontact measurements are practical. Surface temperature measurements are not reliable and do not give accurate readings of the bulk material temperature. Since the speed of sound changes during the transition from the solid to the liquid state, ultrasonics offers the potential to determine when a material becomes semi-solid. This paper summarizes attempts to use this change as the means of measuring the solid fraction of semi-solid feedstock. A real time solid fraction sensor system using noncontact laser ultrasonics was developed to measure the SSM material's solid fraction during heating. The system includes a high power Nd:Yag laser for ultrasound generation and a Fabry-Perot interferometer for receiving. The interferometer was optimized for maximum light efficiency and for immunity to the electro-magnetic noise generated by the induction furnaces used in heating the SSM billets. Tests have demonstrated excellent signal to noise ratio at room temperature and at temperatures up to 579 degrees C. A summary of the test results is presented.

Paper Details

Date Published: 14 June 1995
PDF: 8 pages
Proc. SPIE 2544, Interferometry VII: Techniques and Analysis, (14 June 1995); doi: 10.1117/12.211881
Show Author Affiliations
Robert Czarnek, Concurrent Technologies Corp. (United States)
Chin-Jye Yu, Concurrent Technologies Corp. (United States)
F. Robert Dax, Concurrent Technologies Corp. (United States)


Published in SPIE Proceedings Vol. 2544:
Interferometry VII: Techniques and Analysis
Malgorzata Kujawinska; Ryszard J. Pryputniewicz; Mitsuo Takeda, Editor(s)

© SPIE. Terms of Use
Back to Top