Share Email Print

Proceedings Paper

Modeling of the balanced bridge mine detection sensor using the transmission line matrix (TLM) technique
Author(s): Kelly D. Sherbondy
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A numerical time-domain technique known as the transmission line matrix (TLM) method is used to analyze a ground penetrating radar (GPR) concept known historically as balanced bridge. This GPR concept is a dielectric anomaly (mine) detection sensor which operates in the UHF frequency band. This mine sensor consists of two receive broadband antennas separated by a single center transmit antenna. Traditionally, if care is taken in the construction of the antennas, the direct coupling and ground reflection energies are combined and nulled out by a hardware coupler when the sensor configuration is over homogeneous soil. When one of the two receiving antennas is over a dielectric anomaly (mine), the differenced energies from the two receiving antennas no longer produces a null and a peaked response is observed. This mine sensing technique has performed well under experimental tests at Fort Belvoir and Fort A.P. Hill, Virginia. Testing results, at different sites using different mine types, have indicated the sensor's performance in terms of probability of detection and false-alarm rates. The TLM method is used to describe the balanced bridge mine detector's response to targets and clutter as well as its unique capabilities in an attempt to shed light into occurring fundamental wave interactions.

Paper Details

Date Published: 20 June 1995
PDF: 12 pages
Proc. SPIE 2496, Detection Technologies for Mines and Minelike Targets, (20 June 1995); doi: 10.1117/12.211385
Show Author Affiliations
Kelly D. Sherbondy, U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Published in SPIE Proceedings Vol. 2496:
Detection Technologies for Mines and Minelike Targets
Abinash C. Dubey; Ivan Cindrich; James M. Ralston; Kelly A. Rigano, Editor(s)

© SPIE. Terms of Use
Back to Top