Share Email Print
cover

Proceedings Paper

Polarimetric subspace target detector for SAR data based on the Huynen dihedral model
Author(s): Victor J. Larson; Leslie M. Novak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Two new polarimetric subspace target detectors are developed based on a dihedral signal model for bright peaks within a spatially extended target signature. The first is a coherent dihedral target detector based on the exact Huynen model for a dihedral. The second is a noncoherent dihedral target detector based on the Huynen model with an extra unknown phase term. Expressions for these polarimetric subspace target detectors are developed for both additive Gaussian clutter and more general additive spherically invariant random vector clutter including the K-distribution. For the case of Gaussian clutter with unknown clutter parameters, constant false alarm rate implementations of these polarimetric subspace target detectors are developed. The performance of these dihedral detectors is demonstrated with real millimeter-wave fully polarimetric SAR data. The coherent dihedral detector which is developed with a more accurate description of a dihedral offers no performance advantage over the noncoherent dihedral detector which is computationally more attractive. The dihedral detectors do a better job of separating a set of tactical military targets from natural clutter compared to a detector that assumes no knowledge about the polarimetric structure of the target signal.

Paper Details

Date Published: 5 June 1995
PDF: 16 pages
Proc. SPIE 2487, Algorithms for Synthetic Aperture Radar Imagery II, (5 June 1995); doi: 10.1117/12.210841
Show Author Affiliations
Victor J. Larson, George Mason Univ. (United States)
Leslie M. Novak, MIT Lincoln Lab. (United States)


Published in SPIE Proceedings Vol. 2487:
Algorithms for Synthetic Aperture Radar Imagery II
Dominick A. Giglio, Editor(s)

© SPIE. Terms of Use
Back to Top