Share Email Print
cover

Proceedings Paper

Identification of the ideal clutter metric to predict time dependence of human visual search
Author(s): Joan F. Cartier; David H. Hsu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Army Night Vision and Electronic Sensors Directorate (NVESD) has recently performed a human perception experiment in which eye tracker measurements were made on trained military observers searching for targets in infrared images. This data offered an important opportunity to evaluate a new technique for search modeling. Following the approach taken by Jeff Nicoll, this model treats search as a random walk in which the observers are in one of two states until they quit: they are either searching, or they are wandering around looking for a point of interest. When wandering they skip rapidly from point to point. When examining they move more slowly, reflecting the fact that target discrimination requires additional thought processes. In this paper we simulate the random walk, using a clutter metric to assign relative attractiveness to points of interest within the image which are competing for the observer's attention. The NVESD data indicates that a number of standard clutter metrics are good estimators of the apportionment of observer's time between wandering and examining. Conversely, the apportionment of observer time spent wandering and examining could be used to reverse engineer the ideal clutter metric which would most perfectly describe the behavior of the group of observers. It may be possible to use this technique to design the optimal clutter metric to predict performance of visual search.

Paper Details

Date Published: 22 May 1995
PDF: 10 pages
Proc. SPIE 2470, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing VI, (22 May 1995); doi: 10.1117/12.210069
Show Author Affiliations
Joan F. Cartier, Institute for Defense Analyses (United States)
David H. Hsu, Institute for Defense Analyses (United States)


Published in SPIE Proceedings Vol. 2470:
Infrared Imaging Systems: Design, Analysis, Modeling, and Testing VI
Gerald C. Holst, Editor(s)

© SPIE. Terms of Use
Back to Top