Share Email Print
cover

Proceedings Paper

Back-projection image reconstruction using photon density waves in tissues
Author(s): Scott A. Walker; Albert E. Cerussi; Enrico Gratton
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The reconstruction of scattering and absorption inhomogeneities in tissues generally involves the solution of the inverse scattering problem. This is a computationally intesive task that cannot be easily performed during image acquisition. Instead, we obtain approximate spatial maps of absorption and scattering coefficients using a back-projection algorithm, similar in principle to that used in computerized tomography. Given the nonlinear nature of light propagation in tissue, we expect that this approach can only give a first approximation solution of the reconstruction problem. Our preliminary results indicate that relatively accurate maps are rapidly obtained. We have reconstructed, to a first approximation, the optical parameters and positions of scattering and partially absorbing objects. Our back-projection approach employs frequency-domain methods using a light emitting diode as the light source (100 MHz modulation frequency, peak wavelength 715 nm). Data is collected from multiple linear scans of the investigated area at different projection angles, as in computerized tomography.

Paper Details

Date Published: 30 May 1995
PDF: 8 pages
Proc. SPIE 2389, Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, (30 May 1995); doi: 10.1117/12.209985
Show Author Affiliations
Scott A. Walker, Univ. of Illinois/Urbana-Champaign (United States)
Albert E. Cerussi, Univ. of Illinois/Urbana-Champaign (United States)
Enrico Gratton, Univ. of Illinois/Urbana-Champaign (United States)


Published in SPIE Proceedings Vol. 2389:
Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation
Britton Chance; Robert R. Alfano, Editor(s)

© SPIE. Terms of Use
Back to Top