Share Email Print
cover

Proceedings Paper

Multiple light scattering tomography: beyond the diffusion approximation
Author(s): Sajeev John; Gendi Pang; Yumin Yang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present a formal, microscopic, solution of the radiative transfer problem for an inhomogeneous background. The inhomogeneity is described by a local change in the complex, dielectric autocorrelation function. For the homogeneous background we consider a dielectric autocorrelation function arising from a colloidal suspension of small dielectric spheres. This autocorrelation function can be determined from measurement of the angle-resolved, specific light intensity for photons in the vicinity of R propagating in direction k. Given the nature of the homogeneous background, angle-resolved light intensity measurements may be used to determine the size, shape, and internal structure of the inhomogeneity. In principle, this method improves the resolution of optical tomography to the scale of several optical wavelengths in contrast to methods based on the diffusion approximation which have a resolution on the scale of several transport mean free paths. Angle-resolved, multiple scattering tomography may be useful for the characterization of near-surface tumors.

Paper Details

Date Published: 30 May 1995
PDF: 11 pages
Proc. SPIE 2389, Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, (30 May 1995); doi: 10.1117/12.209953
Show Author Affiliations
Sajeev John, Univ. of Toronto (Canada)
Gendi Pang, Univ. of Toronto (Canada)
Yumin Yang, Univ. of Toronto (Canada)


Published in SPIE Proceedings Vol. 2389:
Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation
Britton Chance; Robert R. Alfano, Editor(s)

© SPIE. Terms of Use
Back to Top