Share Email Print

Proceedings Paper

Effect of nonlinear optical phenomena on retinal damage
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recent studies of retinal damage due to ultrashort laser pulses have shown interesting behavior. Laser thresholds for retinal damage from ultrashort (i.e. <EQ 1 ns) laser pulses are produced at lower energies than in the nanosecond (ns) to microsecond (microsecond(s) ) laser pulse regime. We examine how nonlinear optical phenomena affect the characteristics of light impinging the retina and hence, changes the minimum energy required to produce damage. Nonlinear optical phenomena which occur in homogeneous materials like the ocular media include self-focusing, stimulated Brillouin scattering, supercontinuum generation, laser induced breakdown, and nonlinear absorption. We will discuss all relevant thresholds and determine which nonlinear optical phenomena play a role in mediating the reduction in energy required to produce minimum visible lesion damage to the retina.

Paper Details

Date Published: 22 May 1995
PDF: 7 pages
Proc. SPIE 2391, Laser-Tissue Interaction VI, (22 May 1995); doi: 10.1117/12.209944
Show Author Affiliations
Benjamin A. Rockwell, Air Force Armstrong Lab. (United States)
Paul K. Kennedy, Air Force Armstrong Lab. (United States)
Robert J. Thomas, Air Force Armstrong Lab. (United States)
William P. Roach, Air Force Armstrong Lab. (United States)
Mark E. Rogers, Air Force Armstrong Lab. (United States)

Published in SPIE Proceedings Vol. 2391:
Laser-Tissue Interaction VI
Steven L. Jacques, Editor(s)

© SPIE. Terms of Use
Back to Top