Share Email Print

Proceedings Paper

Effects of coordinate system choice on measured regional myocardial function in short-axis cine electron-beam tomography
Author(s): Judd E. Reed; John A. Rumberger; Jean Buithieu; Thomas Behrenbeck; Jerome F. Breen; Patrick F. Sheedy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Following myocardial infarction, the size of the infarcted region and the systolic functioning of the noninfarcted region are commonly assessed by various cross- sectional imaging techniques. A series of images representing successive phases of the cardiac cycle can be acquired by several imaging modalities including electron beam computed tomography, magnetic resonance imaging, and echocardiography. For the assessment of patterns of ventricular contraction, images are commonly acquired of ventricular cross-sections normal to the 'long' axis of the heart and parallel to the mitral valve plane. The endocardial and epicardial surfaces of the myocardium are identified. Then the ventricle is divided into sectors and the volumes of blood and myocardium within each sector at multiple phases of the cardiac cycle are measured. Regional function parameters are derived from these measurements. This generally mandates the use of a polar or cylindrical coordinate system. Various algorithms have been used to select the origin of this coordinate system. These include the centroid of the endocardial surface, the epicardial surface, or of a polygon whose vertices lie midway between the epicardial and endocardial surfaces of the myocardium (centerline method). Another algorithm has been developed in our laboratory. This uses the centroid (or center of mass) of the myocardium exclusive of the ventricular cavity. Each of these choices for origin of coordinate system can be derived from the end- diastolic image or from the end-systolic image. Alternately, new coordinate systems can be selected for each phase of the cardiac cycle. These are referred to as 'floating' coordinate systems. A series of computer models have been developed in our laboratory to study the effects of each of these choices on the regional function parameters of normal ventricles and how these choices effect the quantification of regional abnormalities after myocardial infarction. The most sophisticated of these is an interactive program with a graphical user interface which facilitates the simulation of a wide variety of dynamic ventricular cross sections. Analysis of these simulations has led to a better understanding of how polar coordinate system placement influences the results of quantitative regional ventricular function assessment. It has also created new insight into how the appropriateness of the placement of such a polar coordinate systems can be objectively assessed. The validity of the conclusions drawn from the analysis of simulated ventricular shapes was validated through the analysis of outlines extracted from cine electron beam computed tomographic images. This was done using another interactive software tool developed specifically for this purpose. With this tool, the effects on regional function parameters of various choices for origin placement can be directly observed. This has proven to reinforce the conclusions drawn from the simulations and has led to the modification of the procedures used in our laboratory. Conclusions: The so-called floating coordinate systems are superior to fixed ones for quantification of regional left ventricular contraction in almost every respect. The use of regional ejection fractions with a coordinate system origin located at the centroid of the endocardial surface can lead to 180 degree errors in identifying the location of a myocardial infarction. This problem is less pronounced with midline and epicardium- based centroids and does not occur when the centroid of the myocardium is used. The quantified migration of myocardial mass across sector boundaries is a useful indicator of an inappropriate choice of coordinate system origin. When the centroid of the myocardium falls well within the ventricular cavity, as it usually does, it is a better location for the origin for regional analysis than any of the other centroids analyzed.

Paper Details

Date Published: 24 May 1995
PDF: 12 pages
Proc. SPIE 2433, Medical Imaging 1995: Physiology and Function from Multidimensional Images, (24 May 1995); doi: 10.1117/12.209708
Show Author Affiliations
Judd E. Reed, Mayo Clinic and Foundation (United States)
John A. Rumberger, Mayo Clinic and Foundation (United States)
Jean Buithieu, Mayo Clinic and Foundation (United States)
Thomas Behrenbeck, Mayo Clinic and Foundation (United States)
Jerome F. Breen, Mayo Clinic and Foundation (United States)
Patrick F. Sheedy, Mayo Clinic and Foundation (United States)

Published in SPIE Proceedings Vol. 2433:
Medical Imaging 1995: Physiology and Function from Multidimensional Images
Eric A. Hoffman, Editor(s)

© SPIE. Terms of Use
Back to Top