Share Email Print
cover

Proceedings Paper

High-speed three-frame image recording system using colored flash units and low-cost video equipment
Author(s): Roberto G. Racca; Larry N. Scotten
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This article describes a method that allows the digital recording of sequences of three black and white images at rates of several thousand frames per second using a system consisting of an ordinary CCD camcorder, three flash units with color filters, a PC-based frame grabber board and some additional electronics. The maximum framing rate is determined by the duration of the flashtube emission, and for common photographic flash units lasting about 20 microsecond(s) it can exceed 10,000 frames per second in actual use. The subject under study is strobe- illuminated using a red, a green and a blue flash unit controlled by a special sequencer, and the three images are captured by a color CCD camera on a single video field. Color is used as the distinguishing parameter that allows the overlaid exposures to be resolved. The video output for that particular field will contain three individual scenes, one for each primary color component, which potentially can be resolved with no crosstalk between them. The output is electronically decoded into the primary color channels, frame grabbed and stored into digital memory, yielding three time-resolved images of the subject. A synchronization pulse provided by the flash sequencer triggers the frame grabbing so that the correct video field is acquired. A scheme involving the use of videotape as intermediate storage allows the frame grabbing to be performed using a monochrome video digitizer. Ideally each flash- illuminated scene would be confined to one color channel, but in practice various factors, both optical and electronic, affect color separation. Correction equations have been derived that counteract these effects in the digitized images and minimize 'ghosting' between frames. Once the appropriate coefficients have been established through a calibration procedure that needs to be performed only once for a given configuration of the equipment, the correction process is carried out transparently in software every time a sequence is acquired.

Paper Details

Date Published: 30 May 1995
PDF: 12 pages
Proc. SPIE 2513, 21st International Congress on: High-Speed Photography and Photonics, (30 May 1995); doi: 10.1117/12.209611
Show Author Affiliations
Roberto G. Racca, Racca Scientific Consulting (Canada)
Larry N. Scotten, Vivitro Systems, Inc. (Canada)


Published in SPIE Proceedings Vol. 2513:
21st International Congress on: High-Speed Photography and Photonics
Ung Kim; Joon-Sung Chang; Seung-Han Park, Editor(s)

© SPIE. Terms of Use
Back to Top