Share Email Print
cover

Proceedings Paper

Multiscale approach to the control of smart materials
Author(s): Kenneth C. Chou; Gary S. Guthart; David S. Flamm
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The development of control technology specifically for smart materials has lagged substantially behind that of the base materials, transducers and embedding techniques. Still, development of materials with ever- greater numbers of embedded elements continues, spurred by potential uses that require large arrays of sensors and actuators. No control technology suitable for such large arrays exists, however, and this presents a barrier to future applications. In this paper we report on work aimed at developing and demonstrating technology capable of controlling hundreds or thousands of sensors and actuators embedded in the base material. We have dubbed this the 'KIKO control problem' (Kilo- Input/Kilo-Output) for smart materials. This paper focuses on a new multiscale/multirate theory of hierarchical design based on the wavelet transform. In the context of this theory, we develop efficient and highly scalable implementations of control systems using multiprocessor architectures. The paper covers: a description of our multiscale control approach, simulation results on an Euler-Bernoulli beam, and open issues.

Paper Details

Date Published: 12 May 1995
PDF: 15 pages
Proc. SPIE 2447, Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies, (12 May 1995); doi: 10.1117/12.209338
Show Author Affiliations
Kenneth C. Chou, SRI International (United States)
Gary S. Guthart, SRI International (United States)
David S. Flamm, SRI International (United States)


Published in SPIE Proceedings Vol. 2447:
Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies
C. Robert Crowe; Gary L. Anderson, Editor(s)

© SPIE. Terms of Use
Back to Top