Share Email Print
cover

Proceedings Paper

Active control of buckling using piezoceramic actuators
Author(s): Andrew A. Berlin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The buckling of compressively-loaded members is one of the most important factors limiting the overall strength and stability of many structures. This paper presents experimental results showing that active control can be used to stabilize compressive members against buckling, allowing them to be loaded well in excess of their critical buckling load. Experiments conducted using a composite steel/piezo-ceramic column achieved a factor of 5.6 increase in load-bearing capability through active stabilization of the first two uniaxial buckling modes. In addition, a small-scale railroad-style truss bridge was constructed to demonstrate the multiple actively stabilized compressive members may be incorporated into a compound structure. This paper presents an overview of the experimental results, suggests design criteria for actively stabilized members, and discusses potential industrial applications.

Paper Details

Date Published: 12 May 1995
PDF: 14 pages
Proc. SPIE 2447, Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies, (12 May 1995); doi: 10.1117/12.209328
Show Author Affiliations
Andrew A. Berlin, Xerox Palo Alto Research Ctr. (United States)


Published in SPIE Proceedings Vol. 2447:
Smart Structures and Materials 1995: Industrial and Commercial Applications of Smart Structures Technologies
C. Robert Crowe; Gary L. Anderson, Editor(s)

© SPIE. Terms of Use
Back to Top