Share Email Print

Proceedings Paper

Assessment of silicon carbide x-ray mask overlay performance in the IBM Advanced Lithography Facility x-ray stepper
Author(s): Kurt R. Kimmel; Alek C. Chen; Lynn A. Powers; Ben R. Vampatella
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents the results of a study to explicitly assess the performance of silicon carbide masks by directly measuring overlay accuracy and precision of exposures made on a state-of-the-art commercially available x-ray stepper, the Suss XRS200/3. The work was done using a mask fabricated at IBM from silicon carbide coated wafers obtained from HOYA Electronics Corp. with exposures completed at IBM's Advanced Lithography Facility (ALF) using synchrotron-generated radiation. The mask pattern design contains many overlay measurement fiducials, resolution patterns, and alignment verniers, and two sets of three alignment marks: one set inboard (kerf) and one set outboard. The performance of an imaging-based alignment system, such as the ALX system on the Suss XRS200/3 steppers, varies depending upon the optical characteristics of the alignment marks on the mask and wafer.

Paper Details

Date Published: 19 May 1995
PDF: 8 pages
Proc. SPIE 2437, Electron-Beam, X-Ray, EUV, and Ion-Beam Submicrometer Lithographies for Manufacturing V, (19 May 1995); doi: 10.1117/12.209176
Show Author Affiliations
Kurt R. Kimmel, IBM Microelectronics (United States)
Alek C. Chen, IBM Microelectronics (United States)
Lynn A. Powers, IBM Microelectronics (United States)
Ben R. Vampatella, IBM Microelectronics (United States)

Published in SPIE Proceedings Vol. 2437:
Electron-Beam, X-Ray, EUV, and Ion-Beam Submicrometer Lithographies for Manufacturing V
John M. Warlaumont, Editor(s)

© SPIE. Terms of Use
Back to Top