Share Email Print

Proceedings Paper

Demonstration and modeling of a tapered-lensed optical fiber trap
Author(s): Edward R. Lyons; Gregory J. Sonek
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical trapping is a novel technique that utilizes radiation pressure for the non-contact manipulation and control of micron sized particles including living cells and micro-organisms. Typically, optical trapping is performed using a high power microscope and a complicated optical setup to form a single beam optical gradient trap or `optical tweezers.' Recent work has demonstrated three dimensional optical trapping using the counterpropagating beams from two optical fiber cleaves. This results in a simple and low cost implementation of an optical trap. Our paper discuses a refinement of this technique using pigtailed 1.3 micrometers semiconductor lasers and tapered lensed optical fibers with hemispherically machined microlens ends. Our optical trap consists of two tapered fiber lenses separated by distances of between 100 and 400 microns, with optical power ranges between 2 and 40 mW. Adjusting the relative powers of the optical fibers allowed us to trap and position 3, 5 and 10 micron beads over axial distances of several hundred microns. Our refinements improve trap accessibility while simultaneously increasing the trap stability. We have also used a ray optics model to simulate the performance of the optical fiber trap and predict the forces generated throughout the trapping volume. Axial and transverse trapping efficiencies up to 0.1 are predicted. The model can be used to predict trap strength and stability for various combinations of fiber spacings and particle sizes. Experimental observations of trapping and manipulation of 3 micrometers , 5 micrometers , and 10 micrometers beads are also presented and compared to the model.

Paper Details

Date Published: 12 May 1995
PDF: 13 pages
Proc. SPIE 2383, Micro-Optics/Micromechanics and Laser Scanning and Shaping, (12 May 1995); doi: 10.1117/12.209020
Show Author Affiliations
Edward R. Lyons, Univ. of California/Irvine (United States)
Gregory J. Sonek, Univ. of California/Irvine (United States)

Published in SPIE Proceedings Vol. 2383:
Micro-Optics/Micromechanics and Laser Scanning and Shaping
M. Edward Motamedi; Leo Beiser, Editor(s)

© SPIE. Terms of Use
Back to Top