Share Email Print
cover

Proceedings Paper

Experimental investigation on a novel 3D isolator made of shape memory alloy pseudo-rubber
Author(s): Su-chao Li; An-xin Guo; Chen-xi Mao; Hui Li; Yagebai Zhao
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Base isolation technology has been widely theoretically and experimentally investigated, and it has also been verified through many severe earthquakes. Three dimensional (3-D) isolation technology was proposed several years ago, and the 3-D isolation theory has well developed till now. However, the development of 3-D isolation technology was deeply affected by the 3-D isolator devices. Many presented 3-D isolators are generally made up of complicated components, such as rubber, springs, dampers or theirs combinations. These isolators have some problem in certain extent, such as difficult fabrication process or little energy dissipation ability along the vertical direction. This paper presents a novel 3- D isolator which is made up of martensitic shape memory alloy wires through weaving, rolling, and punching. Mechanical properties of 3-D shape memory alloy pseudo-rubber isolator (SMAPRI) are investigated including compression, shear, and compression-shear loading with different frequencies and amplitudes. The mechanical behavior of isolators with different parameters is also compared. Accordingly, the mechanism resulting in the above differences is also analyzed. Experimental results indicated that 3-D SMAPRI has good mechanical properties and energy dissipation ability along both of horizontal and vertical direction. The fabrication process of the proposed 3-D isolator is relatively easy and the mechanism of isolation is clearer than the traditional 3-D isolators. Therefore, this new kind of 3-D isolator has good potentiality in both of seismic isolation for civil infrastructures and industrial isolation for important or precision equipment.

Paper Details

Date Published: 2 April 2015
PDF: 8 pages
Proc. SPIE 9431, Active and Passive Smart Structures and Integrated Systems 2015, 94312N (2 April 2015); doi: 10.1117/12.2085623
Show Author Affiliations
Su-chao Li, Harbin Institute of Technology (China)
An-xin Guo, Harbin Institute of Technology (China)
Chen-xi Mao, China Earthquake Administration (China)
Hui Li, Harbin Institute of Technology (China)
Yagebai Zhao, Northeast Forestry Univ. (China)


Published in SPIE Proceedings Vol. 9431:
Active and Passive Smart Structures and Integrated Systems 2015
Wei-Hsin Liao, Editor(s)

© SPIE. Terms of Use
Back to Top