Share Email Print
cover

Proceedings Paper

Control of the magnetization dynamics in patterned nanostructures with magnetoelastic coupling
Author(s): Yu Yahagi; Bruce Harteneck; Stefano Cabrini; Holger Schmidt
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We review the influence of the magnetoelastic coupling with surface acoustic waves (SAWs) on the dynamic magnetic response of a periodic nanomagnet array. In addition to exciting the magnetization precession, an ultrafast laser pulse generates multiple SAW modes whose frequencies are determined by the array pitch. As a result, strong pinning of the magnetization precession frequency at the crossover points with the SAWs is observed over an extended field range. The complex spin wave spectrum can be analyzed in frequency and momentum spaces using finite element analysis emulating generation of SAWs. The magnetic response of the nanomagnets was then correctly reproduced with micromagnetic simulations taking into account additional magnetoelastic energy terms. This finding demonstrates control of the nanomagnet dynamics with the array geometry via magnetoelastic coupling, even when the magnetostatic interaction between the magnets is negligible.

Paper Details

Date Published: 27 February 2015
PDF: 8 pages
Proc. SPIE 9371, Photonic and Phononic Properties of Engineered Nanostructures V, 93711O (27 February 2015); doi: 10.1117/12.2084978
Show Author Affiliations
Yu Yahagi, Univ. of California, Santa Cruz (United States)
Bruce Harteneck, Lawrence Berkeley National Lab. (United States)
Stefano Cabrini, Lawrence Berkeley National Lab. (United States)
Holger Schmidt, Univ. of California, Santa Cruz (United States)


Published in SPIE Proceedings Vol. 9371:
Photonic and Phononic Properties of Engineered Nanostructures V
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top