Share Email Print
cover

Proceedings Paper

Potential use of IR dyes for metal ion sensors
Author(s): Olaf J. Rolinski; I. R. Downie; Sheila Smith; David J. S. Birch
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The fluorescence quenching of molecules by analytes of interest, is a widely employed phenomenon in fluorescence sensing technology. Forster type dipole-dipole energy transfer from dye molecules to transition metal ions, provides a method of monitoring the concentration of these ions with some degree of selectivity. Each metal ion has a different absorption spectrum, hence, in principle it is possible to choose different fluorophores for each metal ion. In the present work, quenching studies of the carbocyanine dye DTDCI by transition metal ions in a viscous solvent and a Nafion polymer matrices are reported. The potential for fabricating near-infrared energy transfer sensors is assessed, particularly with regard to detecting copper ions in solution.

Paper Details

Date Published: 8 May 1995
PDF: 12 pages
Proc. SPIE 2388, Advances in Fluorescence Sensing Technology II, (8 May 1995); doi: 10.1117/12.208490
Show Author Affiliations
Olaf J. Rolinski, Univ. of Strathclyde (United Kingdom)
I. R. Downie, Univ. of Strathclyde (United Kingdom)
Sheila Smith, Univ. of Strathclyde (United Kingdom)
David J. S. Birch, Univ. of Strathclyde (United Kingdom)


Published in SPIE Proceedings Vol. 2388:
Advances in Fluorescence Sensing Technology II
Joseph R. Lakowicz, Editor(s)

© SPIE. Terms of Use
Back to Top