Share Email Print
cover

Proceedings Paper

Adaptive pitch control for load mitigation of wind turbines
Author(s): Yuan Yuan; J. Tang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.

Paper Details

Date Published: 3 April 2015
PDF: 10 pages
Proc. SPIE 9435, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015, 94351X (3 April 2015); doi: 10.1117/12.2084423
Show Author Affiliations
Yuan Yuan, Univ. of Connecticut (United States)
J. Tang, Univ. of Connecticut (United States)


Published in SPIE Proceedings Vol. 9435:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015
Jerome P. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top