Share Email Print
cover

Proceedings Paper

Reliability-based design optimization for nonlinear energy harvesters
Author(s): Sumin Seong; Soobum Lee; Chao Hu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The power output of a vibration energy harvesting device is highly sensitive to uncertainties in materials, manufacturing, and operating conditions. Although the use of a nonlinear spring (e.g., snap-through mechanism) in energy harvesting device has been reported to reduce the sensitivity of power output with respect to the excitation frequency, the nonlinear spring characteristic remains significantly sensitive and it causes unreliable power generation. In this paper, we present a reliability-based design optimization (RBDO) study of vibration energy harvesters. For a nonlinear harvester, a purely mechanical nonlinear spring design implemented in the middle of cantilever beam harvester is considered in the study. This design has the curved section in the center of beam that causes bi-stable configuration. When vibrating, the inertia of the tip mass activates the curved shell to cause snap-through buckling and make the nature of vibration nonlinear. In this paper, deterministic optimization (DO) is performed to obtain deterministic optimum of linear and nonlinear energy harvester configuration. As a result of the deterministic optimization, an optimum bi-stable vibration configuration of nonlinear harvester can be obtained for reliable power generation despite uncertainty on input vibration condition. For the linear harvester, RBDO is additionally performed to find the optimum design that satisfies a target reliability on power generation, while accounting for uncertainty in material properties and geometric parameters.

Paper Details

Date Published: 27 March 2015
PDF: 11 pages
Proc. SPIE 9439, Smart Materials and Nondestructive Evaluation for Energy Systems 2015, 94390Q (27 March 2015); doi: 10.1117/12.2084045
Show Author Affiliations
Sumin Seong, Univ. of Maryland, Baltimore County (United States)
Soobum Lee, Univ. of Maryland, Baltimore County (United States)
Chao Hu, Medtronic, Inc. (United States)


Published in SPIE Proceedings Vol. 9439:
Smart Materials and Nondestructive Evaluation for Energy Systems 2015
Norbert G. Meyendorf, Editor(s)

© SPIE. Terms of Use
Back to Top