Share Email Print

Proceedings Paper

Dynamics of a bistable snapping microactuator
Author(s): Yao-Joe Yang; Chang-Jin Kim
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A study on the dynamics characteristics of a snap-action bistable microactuator that employs bimorph heating and residual-stress tension for switching behavior is presented. This study helps to characterize the device more completely and also provides valuable insights into the dynamic behavior of devices in micro-scale. The relation of bending moment and deflection during switching is numerically simulated by applying a simplified snap-through model. The model also takes air drag into consideration. The analysis shows that the switching time from one stable position to the other is less than 1 microsecond(s) , which is one thousand times shorter than the required cooling after each actuation. Hence, for the reported bistable microactuators that have overall lengths of about 200 micrometers and operate in air the maximum switching cycle time is expected to be in the kHz range that is based on thermal characteristics of the device.

Paper Details

Date Published: 8 May 1995
PDF: 9 pages
Proc. SPIE 2443, Smart Structures and Materials 1995: Smart Structures and Integrated Systems, (8 May 1995); doi: 10.1117/12.208312
Show Author Affiliations
Yao-Joe Yang, Univ. of California/Los Angeles (United States)
Chang-Jin Kim, Univ. of California/Los Angeles (United States)

Published in SPIE Proceedings Vol. 2443:
Smart Structures and Materials 1995: Smart Structures and Integrated Systems
Inderjit Chopra, Editor(s)

© SPIE. Terms of Use
Back to Top