Share Email Print
cover

Proceedings Paper

Development of a higher order laminate theory for modeling composites with induced strain actuators
Author(s): Charles E. Seeley; Aditi Chattopadhyay
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full 3D analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thickness ranging from thin to very thick.

Paper Details

Date Published: 8 May 1995
PDF: 13 pages
Proc. SPIE 2443, Smart Structures and Materials 1995: Smart Structures and Integrated Systems, (8 May 1995); doi: 10.1117/12.208270
Show Author Affiliations
Charles E. Seeley, Arizona State Univ. (United States)
Aditi Chattopadhyay, Arizona State Univ. (United States)


Published in SPIE Proceedings Vol. 2443:
Smart Structures and Materials 1995: Smart Structures and Integrated Systems
Inderjit Chopra, Editor(s)

© SPIE. Terms of Use
Back to Top