Share Email Print
cover

Proceedings Paper

A biomechanical approach for in vivo lung tumor motion prediction during external beam radiation therapy
Author(s): Elham Karami; Stewart Gaede; Ting-Yim Lee; Abbas Samani
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Lung Cancer is the leading cause of cancer death in both men and women. Among various treatment methods currently being used in the clinic, External Beam Radiation Therapy (EBRT) is used widely not only as the primary treatment method, but also in combination with chemotherapy and surgery. However, this method may lack desirable dosimetric accuracy because of respiration induced tumor motion. Recently, biomechanical modeling of the respiratory system has become a popular approach for tumor motion prediction and compensation. This approach requires reasonably accurate data pertaining to thoracic pressure variation, diaphragm position and biomechanical properties of the lung tissue in order to predict the lung tissue deformation and tumor motion. In this paper, we present preliminary results of an in vivo study obtained from a Finite Element Model (FEM) of the lung developed to predict tumor motion during respiration.

Paper Details

Date Published: 18 March 2015
PDF: 6 pages
Proc. SPIE 9415, Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, 941512 (18 March 2015); doi: 10.1117/12.2082447
Show Author Affiliations
Elham Karami, Western Univ. (Canada)
Robarts Research Institute (Canada)
Stewart Gaede, Western Univ. (Canada)
Ting-Yim Lee, Western Univ. (Canada)
Robarts Research Institute (Canada)
Lawson Health Research Institute (Canada)
Abbas Samani, Western Univ. (Canada)
Robarts Research Institute (Canada)


Published in SPIE Proceedings Vol. 9415:
Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling
Robert J. Webster; Ziv R. Yaniv, Editor(s)

© SPIE. Terms of Use
Back to Top