Share Email Print
cover

Proceedings Paper

Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes
Author(s): Arash Pourtaherian; Svitlana Zinger; Peter H. N. de With; Hendrikus H. M. Korsten; Nenad Mihajlovic
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

Paper Details

Date Published: 18 March 2015
PDF: 8 pages
Proc. SPIE 9415, Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, 94152B (18 March 2015); doi: 10.1117/12.2081800
Show Author Affiliations
Arash Pourtaherian, Technische Univ. Eindhoven (Netherlands)
Svitlana Zinger, Technische Univ. Eindhoven (Netherlands)
Peter H. N. de With, Technische Univ. Eindhoven (Netherlands)
Hendrikus H. M. Korsten, Catharina Hospital Eindhoven (Netherlands)
Technische Univ. Eindhoven (Netherlands)
Nenad Mihajlovic, Philips Research Nederland B.V. (Netherlands)


Published in SPIE Proceedings Vol. 9415:
Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling
Robert J. Webster; Ziv R. Yaniv, Editor(s)

© SPIE. Terms of Use
Back to Top