Share Email Print
cover

Proceedings Paper

Evaluation of the effective focal spot size of x-ray tubes by utilizing the edge response analysis
Author(s): Masayuki Nishiki
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Evaluation of the effective focal spot size of X-ray tube has been made utilizing the slit or the pin-hole camera, but is not widely used in a daily practice due to the need of specialized tools. The author proposes a simplified method in which only a metal edge and a digital detector are used, together with a process of removing detector blur inherently associated with the adoption of such a detector. The evaluation was made through the OTF (Optical Transfer Function) measurements by using the edge response analysis. Through the whole study, the use of OTF instead of MTF (Modulation Transfer Function) was essential in order to stay within the linear systems theory framework, at cost of handling complex functions. Evaluation steps were as follows; 1. The inherent OTF of the detector (OTFdet) was measured by acquiring an image of the edge being closely contacted to the detector. 2. The second OTF (OTFmulti) was measured with the edge placed apart from the detector so as to implement 2 times geometrical magnification of the edge. OTFmulti is the product of OTFdet and the focal spot OTF (OTFfocus). 3. OTFfocus was obtained by calculating OTFmulti / OTFdet, thus removing the detector blur completely. 4. The LSF of the focal spot was obtained through the inverse Fourier transform of OTFfocus. The resultant LSFfocus was assured to be a real function due to the fact that original LSFdet and LSFmulti were both real functions. Preliminary results well matched those obtained by the pinhole camera.

Paper Details

Date Published: 18 March 2015
PDF: 11 pages
Proc. SPIE 9412, Medical Imaging 2015: Physics of Medical Imaging, 94123Z (18 March 2015); doi: 10.1117/12.2081306
Show Author Affiliations
Masayuki Nishiki, International Univ. of Health and Welfare (Japan)


Published in SPIE Proceedings Vol. 9412:
Medical Imaging 2015: Physics of Medical Imaging
Christoph Hoeschen; Despina Kontos, Editor(s)

© SPIE. Terms of Use
Back to Top