Share Email Print
cover

Proceedings Paper

Association of mammographic image feature change and an increasing risk trend of developing breast cancer: an assessment
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We recently investigated a new mammographic image feature based risk factor to predict near-term breast cancer risk after a woman has a negative mammographic screening. We hypothesized that unlike the conventional epidemiology-based long-term (or lifetime) risk factors, the mammographic image feature based risk factor value will increase as the time lag between the negative and positive mammography screening decreases. The purpose of this study is to test this hypothesis. From a large and diverse full-field digital mammography (FFDM) image database with 1278 cases, we collected all available sequential FFDM examinations for each case including the “current” and 1 to 3 most recently “prior” examinations. All “prior” examinations were interpreted negative, and “current” ones were either malignant or recalled negative/benign. We computed 92 global mammographic texture and density based features, and included three clinical risk factors (woman’s age, family history and subjective breast density BIRADS ratings). On this initial feature set, we applied a fast and accurate Sequential Forward Floating Selection (SFFS) feature selection algorithm to reduce feature dimensionality. The features computed on both mammographic views were individually/ separately trained using two artificial neural network (ANN) classifiers. The classification scores of the two ANNs were then merged with a sequential ANN. The results show that the maximum adjusted odds ratios were 5.59, 7.98, and 15.77 for using the 3rd, 2nd, and 1st “prior” FFDM examinations, respectively, which demonstrates a higher association of mammographic image feature change and an increasing risk trend of developing breast cancer in the near-term after a negative screening.

Paper Details

Date Published: 20 March 2015
PDF: 7 pages
Proc. SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis, 941416 (20 March 2015); doi: 10.1117/12.2081034
Show Author Affiliations
Maxine Tan, The Univ. of Oklahoma (United States)
Joseph K. Leader, Univ. of Pittsburgh (United States)
Hong Liu, The Univ. of Oklahoma (United States)
Bin Zheng, The Univ. of Oklahoma (United States)


Published in SPIE Proceedings Vol. 9414:
Medical Imaging 2015: Computer-Aided Diagnosis
Lubomir M. Hadjiiski; Georgia D. Tourassi, Editor(s)

© SPIE. Terms of Use
Back to Top