Share Email Print
cover

Proceedings Paper

Effects of verteporfin-mediated photodynamic therapy on endothelial cells
Author(s): Daniel Kraus; Bin Chen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photodynamic therapy (PDT) is a treatment modality in which cytotoxic reactive oxygen species are generated from oxygen and other biological molecules when a photosensitizer is activated by light. PDT has been approved for the treatment of cancers and age-related macular degeneration (AMD) due to its effectiveness in cell killing and manageable normal tissue complications. In this study, we characterized the effects of verteporfin-PDT on SVEC mouse endothelial cells and determined its underlying cell death mechanisms. We found that verteporfin was primarily localized in mitochondria and endoplasmic reticulum (ER) in SVEC cells. Light treatment of photosensitized SVEC cells induced a rapid onset of cell apoptosis. In addition to significant structural damages to mitochondria and ER, verteporfin-PDT caused substantial degradation of ER signaling molecules, suggesting ER stress. These results demonstrate that verteporfin-PDT triggered SVEC cell apoptosis by both mitochondrial and ER stress pathways. Results from this study may lead to novel therapeutic approaches to enhance PDT outcome.

Paper Details

Date Published: 2 March 2015
PDF: 8 pages
Proc. SPIE 9308, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXIV, 93080K (2 March 2015); doi: 10.1117/12.2080823
Show Author Affiliations
Daniel Kraus, Univ. of the Sciences in Philadelphia (United States)
Bin Chen, Univ. of the Sciences in Philadelphia (United States)


Published in SPIE Proceedings Vol. 9308:
Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXIV
David H. Kessel; Tayyaba Hasan, Editor(s)

© SPIE. Terms of Use
Back to Top