Share Email Print
cover

Proceedings Paper

Status and future of GaN-based vertical-cavity surface-emitting lasers
Author(s): Daniel F. Feezell
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Vertical-cavity surface-emitting lasers (VCSELs) offer distinct advantages over conventional edge-emitting lasers, including lower power consumption, single-longitudinal-mode operation, circularly symmetric output beams, waferlevel testing, and the ability to form densely packed, two-dimensional arrays. High-performance GaN-based VCSELs are well suited for applications in high-density optical data storage, high-resolution printing, lighting, displays, projectors, miniature atomic clocks, and chemical/biological sensing. Thus far, the performance of these devices has been limited by challenges associated with the formation of high-reflectance distributed Bragg reflectors (DBRs), optical mode confinement, carrier transport, lateral current spreading, polarization-related electric fields, and cavity-length control. This manuscript discusses the state-of-the-art results for electrically injected GaN-based VCSELs and reviews approaches to overcome the key challenges currently preventing higher performance devices. The manuscript also describes the development of nonpolar GaN-based VCSELs on free-standing GaN. Nonpolar orientations exhibit anisotropic optical gain within the quantum well plane and uniquely enable VCSELs with a well-defined and stable polarization state. In addition, a detailed description of a band-gap-selective photoelectrochemical etching (BGS PECE) process for substrate removal and fine cavity length control on free-standing GaN substrates is provided.

Paper Details

Date Published: 13 March 2015
PDF: 13 pages
Proc. SPIE 9363, Gallium Nitride Materials and Devices X, 93631G (13 March 2015); doi: 10.1117/12.2079503
Show Author Affiliations
Daniel F. Feezell, The Univ. of New Mexico (United States)


Published in SPIE Proceedings Vol. 9363:
Gallium Nitride Materials and Devices X
Jen-Inn Chyi; Hiroshi Fujioka; Hadis Morkoç, Editor(s)

© SPIE. Terms of Use
Back to Top