Share Email Print
cover

Proceedings Paper

Thulium fiber laser damage to Nitinol stone baskets
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Our laboratory is studying the experimental Thulium fiber laser (TFL) as an alternative lithotripter to clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium laser-induced damage to Nitinol stone baskets have been previously reported. Similarly, this study characterizes TFL induced stone basket damage. A TFL beam with pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rates of 50-500 Hz was delivered through 100-μm-core optical fibers, to a standard 1.9-Fr Nitinol stone basket wire. Stone basket damage was graded as a function of pulse rate, number of pulses, and working distance. Nitinol wire damage decreased with working distance and was non-existent at distances greater than 1.0 mm. In contact mode, 500 pulses delivered at pulse rates ≥ 200 Hz (≤ 2.5 s) were sufficient to cut Nitinol wires. The Thulium fiber laser, operated in low pulse energy and high pulse rate mode, may provide a greater safety margin than standard Holmium laser for lithotripsy, as evidenced by shorter non-contact working distances for stone basket damage than previously reported with Holmium laser.

Paper Details

Date Published: 26 February 2015
PDF: 4 pages
Proc. SPIE 9303, Photonic Therapeutics and Diagnostics XI, 93031A (26 February 2015); doi: 10.1117/12.2079374
Show Author Affiliations
Christopher R. Wilson, The Univ. of North Carolina at Charlotte (United States)
Luke A. Hardy, The Univ. of North Carolina at Charlotte (United States)
Pierce B. Irby, Carolinas Medical Ctr. (United States)
Nathaniel M. Fried, The Univ. of North Carolina at Charlotte (United States)
Carolinas Medical Ctr. (United States)


Published in SPIE Proceedings Vol. 9303:
Photonic Therapeutics and Diagnostics XI
Hyun Wook Kang; Brian J. F. Wong; Melissa C. Skala; Bernard Choi; Guillermo J. Tearney; Andreas Mandelis; Nikiforos Kollias; Kenton W. Gregory; Mark W. Dewhirst; Justus F. Ilgner; Alfred Nuttal; Haishan Zeng; Laura Marcu; Claus-Peter Richter, Editor(s)

© SPIE. Terms of Use
Back to Top