Share Email Print
cover

Proceedings Paper

Effects of growth direction on SiGe/Si heteroepitaxy
Author(s): T. S. Kuan; S. S. Iyer
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this work we study the growth of SiGe/Si superlattices and thick SiGe layers on ( 1 00), ( 1 1 1 ),and ( 1 1 0) Si surfaces at various temperatures by molecular-beam epitaxy (MBE) . We find that these three growth directions give rise to different growth morphologies and defect structures. The best growth is achieved on (100) surfaces, since growth on ( 1 1 1 ) and ( 1 1 0) surfaces are much more susceptible to twin formation. The growth direction, together with growth temperature, also dictates the onset of long-range ordering in SiGe layers. Our results indicate that ordering occurs only in thick, partially-relaxed SiGe layers grown on (100) surfaces at low temperatures but not in strained-layer superlattices grown under identical conditions. Thick SiGe layers or strained-layer superlattices grown on (1 1 1) or (1 10) surfaces at high or low temperatures do not exhibit ordering.

Paper Details

Date Published: 1 October 1990
PDF: 5 pages
Proc. SPIE 1284, Nanostructure and Microstructure Correlation with Physical Properties of Semiconductors, (1 October 1990); doi: 10.1117/12.20793
Show Author Affiliations
T. S. Kuan, IBM/Thomas J. Watson Research (United States)
S. S. Iyer, IBM/Thomas J. Watson Research (United States)


Published in SPIE Proceedings Vol. 1284:
Nanostructure and Microstructure Correlation with Physical Properties of Semiconductors
Harold G. Craighead; J. Murray Gibson, Editor(s)

© SPIE. Terms of Use
Back to Top