Share Email Print
cover

Proceedings Paper

Spatial mapping of the biomechanical properties of rabbit cornea after cross-linking using optical coherence elastography
Author(s): Jiasong Li; Manmohan Singh; Srilatha Vantipalli; Zhaolong Han; Michael D. Twa; Kirill V. Larin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Keratoconus, a structural degeneration of the cornea, is often treated with UV-induced collagen cross-linking (CXL) to increase tissue resistance to further deformation and degeneration. Optimal treatment would be customized to the individual and consider pre-existing biomechanical properties as well as the effects induced by CXL. This requires the capability to noninvasively measure corneal mechanical properties. In this study, we demonstrate the use of phase-stabilized swept source optical coherence elastography (PhS-SSOCE) to assess the relaxation rate of a deformation which was induced by a focused air-pulse in tissue-mimicking gelatin phantoms of various concentration and partially cross-linked rabbit corneas. The temporal relaxation process was utilized to estimate the Young’s modulus from a newly developed model based elasticity reconstruction method. Due to the high spatial sensitivity of PhS-SSOCE, the deformation was only a few microns. The results show that the relaxation process was successfully used to differentiate the untreated (UT) and CXL region of the cornea. The results also indicate that the CXL regions had faster relaxation rates and greater Young’s moduli than the UT regions. Therefore, this method can be used to spatially assess the stiffness of the cornea. This non-contact and noninvasive measurement technique utilizes minimal force for excitation and can be potentially used to study the biomechanical properties of ocular and other sensitive tissues.

Paper Details

Date Published: 6 March 2015
PDF: 6 pages
Proc. SPIE 9327, Optical Elastography and Tissue Biomechanics II, 93270S (6 March 2015); doi: 10.1117/12.2078344
Show Author Affiliations
Jiasong Li, Univ. of Houston (United States)
Manmohan Singh, Univ. of Houston (United States)
Srilatha Vantipalli, Univ. of Houston (United States)
Zhaolong Han, Univ. of Houston (United States)
Michael D. Twa, Univ. of Alabama at Birmingham (United States)
Kirill V. Larin, Univ. of Houston (United States)
Baylor College of Medicine (United States)


Published in SPIE Proceedings Vol. 9327:
Optical Elastography and Tissue Biomechanics II
Kirill V. Larin; David D. Sampson, Editor(s)

© SPIE. Terms of Use
Back to Top