Share Email Print
cover

Proceedings Paper

Plasmonic cell manipulation for biomedical and screening applications
Author(s): Dag Heinemann; Markus Schomaker; Stefan Kalies; Merve Sinram; Patrick Heeger; Hugo Murua Escobar; Heiko Meyer; Tammo Ripken
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Modulation of the cell membrane permeability by the plasmonic interaction of gold nanoparticles and short laser pulses for cell manipulation or destruction has been the objective of several recent studies. Gold nanoparticles in close vicinity to the cellular membrane are irradiated to evoke a nanoscale membrane perforation, enabling extracellular molecules to enter the cell. However, besides several basic studies no real translation from proof of concept experiments to routine usage of this approach was achieved so far.

In order to provide a reproducible and easy-to-use platform for gold nanoparticle mediated (GNOME) laser manipulation, we established an automated and encased laser setup. We demonstrate its feasibility for high-throughput cell manipulation. In particular, protein delivery into canine cancer cells is shown. The biofunctional modification of cells was investigated using the caspase 3 protein, which represents a central effector molecule in the apoptotic signaling cascade. An efficient and temporally well-defined induction of apoptosis was observed with an early onset 2 h after protein delivery by GNOME laser manipulation. Besides protein delivery, modulation of gene function using GNOME laser transfection of antisense molecules was demonstrated, showing the potential of this technique for basic science and screening purposes.

Concluding, we established GNOME laser manipulation of cells as a routine method, which can be utilized reliably for the efficient delivery of biomolecules. Its intrinsic features, being low impairment of the cell viability, high delivery efficiency and universal applicability, render this method well suited for a large variety of biomedical application.

Paper Details

Date Published: 11 March 2015
PDF: 5 pages
Proc. SPIE 9340, Plasmonics in Biology and Medicine XII, 93400Q (11 March 2015); doi: 10.1117/12.2077604
Show Author Affiliations
Dag Heinemann, Laser Zentrum Hannover e.V. (Germany)
Markus Schomaker, Laser Zentrum Hannover e.V. (Germany)
Stefan Kalies, Laser Zentrum Hannover e.V. (Germany)
Merve Sinram, Laser Zentrum Hannover e.V. (Germany)
Patrick Heeger, Laser Zentrum Hannover e.V. (Germany)
Hugo Murua Escobar, Univ. Rostock (Germany)
Heiko Meyer, Laser Zentrum Hannover e.V. (Germany)
Medizinische Hochschule Hannover (Germany)
Tammo Ripken, Laser Zentrum Hannover e.V. (Germany)


Published in SPIE Proceedings Vol. 9340:
Plasmonics in Biology and Medicine XII
Tuan Vo-Dinh; Joseph R. Lakowicz, Editor(s)

© SPIE. Terms of Use
Back to Top