Share Email Print
cover

Proceedings Paper

Electronic shearography for bridge inspection
Author(s): Debashis Satpathi; Arup K. Maji
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Electronic shearography (ES) is a laser based non-destructive testing method that has the potential to be developed into a commercial bridge monitoring technique. The primary advantage of ES over other similar techniques like electronic speckle pattern interferometry (ESPI) is its decreased sensitivity to in-plane rigid body movement and vibrations. Bridge inspection with ES has proven to be a daunting task so far. The main problem has been the inability of the method to handle the large deflections and vibrations that might be expected in a typical bridge subjected to normal service loads. Earlier research has shown that the extent of in-plane movement that can be tolerated by the system is dependent on the speckle size. The speckle size also affects the fringe quality by imposing resolution requirements on the imaging device. This article shall undertake the study of speckle size as a function of the focal length of the imaging lens, object distance and illumination wavelength using high resolution holographic film and a high magnification optical microscope.

Paper Details

Date Published: 20 April 1995
PDF: 11 pages
Proc. SPIE 2446, Smart Structures and Materials 1995: Smart Systems for Bridges, Structures, and Highways, (20 April 1995); doi: 10.1117/12.207726
Show Author Affiliations
Debashis Satpathi, Univ. of New Mexico (United States)
Arup K. Maji, Univ. of New Mexico (United States)


Published in SPIE Proceedings Vol. 2446:
Smart Structures and Materials 1995: Smart Systems for Bridges, Structures, and Highways
Larryl K. Matthews, Editor(s)

© SPIE. Terms of Use
Back to Top