Share Email Print
cover

Proceedings Paper

Speckle photography applied to measure deformations of very large structures
Author(s): Edgar Conley; Chris K. Morgan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Fundamental principles of mechanics have recently been brought to bear on problems concerning very large structures. Fields of study include tectonic plate motion, nuclear waste repository vault closure mechanisms, the flow of glacier and sea ice, and highway bridge damage assessment and residual life prediction. Quantitative observations, appropriate for formulating and verifying models, are still scarce however, so the need to adapt new methods of experimental mechanics is clear. Large dynamic systems often exist in environments subject to rapid change. Therefore, a simple field technique that incorporates short time scales and short gage lengths is required. Further, the measuring methods must yield displacements reliably, and under oft-times adverse field conditions. Fortunately, the advantages conferred by an experimental mechanics technique known as speckle photography nicely fulfill this rather stringent set of performance requirements. Speckle seemed to lend itself nicely to the application since it is robust and relatively inexpensive. Experiment requirements are minimal -- a camera, high resolution film, illumination, and an optically rough surface. Perhaps most important is speckle's distinct advantage over point-by-point methods: It maps the two dimensional displacement vectors of the whole field of interest. And finally, given the method's high spatial resolution, relatively short observation times are necessary. In this paper we discuss speckle, two variations of which were used to gage the deformation of a reinforced concrete bridge structure subjected to bending loads. The measurement technique proved to be easily applied, and yielded the location of the neutral axis self consistently. The research demonstrates the feasibility of using whole field techniques to detect and quantify surface strains of large structures under load.

Paper Details

Date Published: 20 April 1995
PDF: 8 pages
Proc. SPIE 2446, Smart Structures and Materials 1995: Smart Systems for Bridges, Structures, and Highways, (20 April 1995); doi: 10.1117/12.207725
Show Author Affiliations
Edgar Conley, New Mexico State Univ. (United States)
Chris K. Morgan, Exxon Chemical Co. (United States)


Published in SPIE Proceedings Vol. 2446:
Smart Structures and Materials 1995: Smart Systems for Bridges, Structures, and Highways
Larryl K. Matthews, Editor(s)

© SPIE. Terms of Use
Back to Top