Share Email Print
cover

Proceedings Paper

Complex experiment on the study of microphysical, chemical, and optical properties of aerosol particles and estimation of atmospheric aerosol contribution in the Earth radiation budget
Author(s): G. G. Matvienko; B. D. Belan; M. V. Panchenko; O. A. Romanovskii; S. M. Sakerin; D. M. Kabanov; S. A. Turchinovich; Yu. S. Turchinovich; T. A. Eremina; V. S. Kozlov; S. A. Terpugova; V. V. Pol’kin; E. P. Yausheva; D. G. Chernov; T. B. Zuravleva; T. V. Bedareva; S. L. Odintsov; V. D. Burlakov; M. Yu. Arshinov; G. A. Ivlev; D. E. Savkin; A. V. Fofonov; V. A. Gladkikh; A. P. Kamardin; D. B. Belan; M. V. Grishaev; V. V. Belov; S. V. Afonin; Yu. S. Balin; G. P. Kokhanenko; I. E. Penner; S. V. Samoilova; P. N. Antokhin; V. G. Arshinova; D. K. Davydov; A. V. Kozlov; D. A. Pestunov; T. M. Rasskazchikova; D. V. Simonenkov; T. K. Sklyadneva; G. N. Tolmachev; S. B. Belan; V. P. Shmargunov; A. P. Rostov; O. V. Tikhomirova; N. A. Shefer; A. S. Safatov; A. S. Kozlov; S. B. Malyshkin; T. A. Maksimova
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The main aim of the work was complex experimental measurements of microphysical, chemical, and optical parameters of aerosol particles in the surface air layer and free atmosphere. From the measurement data, the entire set of aerosol optical parameters was retrieved, required for radiation calculations. Three measurement runs were carried out in 2013 within the experiment: in spring, when the aerosol generation maximum is observed, in summer (July), when the altitude of the atmospheric boundary layer is the highest, and in the late summer – early autumn, when the second nucleation period is recorded. The following instruments were used in the experiment: diffusion aerosol spectrometers (DAS), GRIMM photoelectric counters, angle-scattering nephelometers, aethalometer, SP-9/6 sun photometer, СЕ 318 Sun-Sky radiometer (AERONET), MS-53 pyrheliometer, MS-802 pyranometer, ASP aureole photometer, SSP scanning photometer, TU-134 Optik flying laboratory, Siberian lidar station, stationary multiwave lidar complex LOZA-M, spectrophotometric complex for measuring total ozone and NO2, multivariable instrument for measuring atmospheric parameters, METEO-2 USM, 2.4 AEHP-2.4m station for satellite data receive. Results of numerical calculations of solar down-fluxes on the Earth’s surface were compared with the values measured in clear air in the summer periods in 2010—2012 in a background region of Siberian boreal zone. It was shown that the relative differences between model and experimental values of direct and total radiation do not exceed 1% and 3%, respectively, with accounting for instrumental errors and measurement error of atmospheric parameters. Thus, independent data on optical, meteorological, and microphysical atmospheric parameters allow mutual intercalibration and supplement and, hence, provide for qualitatively new data, which can explain physical nature of processes that form the vertical structure of the aerosol filed.

Paper Details

Date Published: 25 November 2014
PDF: 18 pages
Proc. SPIE 9292, 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 929254 (25 November 2014); doi: 10.1117/12.2075507
Show Author Affiliations
G. G. Matvienko, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
B. D. Belan, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
M. V. Panchenko, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
O. A. Romanovskii, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
National Research Tomsk State Univ. (Russian Federation)
S. M. Sakerin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
D. M. Kabanov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
S. A. Turchinovich, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
Yu. S. Turchinovich, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
T. A. Eremina, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. S. Kozlov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
S. A. Terpugova, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. V. Pol’kin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
E. P. Yausheva, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
D. G. Chernov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
T. B. Zuravleva, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
T. V. Bedareva, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
S. L. Odintsov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. D. Burlakov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
M. Yu. Arshinov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
G. A. Ivlev, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
D. E. Savkin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
A. V. Fofonov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. A. Gladkikh, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
A. P. Kamardin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
D. B. Belan, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
M. V. Grishaev, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. V. Belov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
S. V. Afonin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
Yu. S. Balin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
G. P. Kokhanenko, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
I. E. Penner, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
S. V. Samoilova, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
P. N. Antokhin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. G. Arshinova, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
D. K. Davydov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
A. V. Kozlov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
D. A. Pestunov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
T. M. Rasskazchikova, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
D. V. Simonenkov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
T. K. Sklyadneva, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
G. N. Tolmachev, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
S. B. Belan, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
V. P. Shmargunov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
A. P. Rostov, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
O. V. Tikhomirova, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
N. A. Shefer, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)
A. S. Safatov, State Research Ctr. of Virology and Biotechnology (Russian Federation)
A. S. Kozlov, Voevodsky Institute of Chemical Kinetics and Combustion (Russian Federation)
S. B. Malyshkin, Voevodsky Institute of Chemical Kinetics and Combustion (Russian Federation)
T. A. Maksimova, Voevodsky Institute of Chemical Kinetics and Combustion (Russian Federation)


Published in SPIE Proceedings Vol. 9292:
20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics
Oleg A. Romanovskii, Editor(s)

© SPIE. Terms of Use
Back to Top