Share Email Print
cover

Proceedings Paper

Optimum design on refrigeration system of high-repetition-frequency laser
Author(s): Gang Li; Li Li; Yezhou Jin; Xinhua Sun; Shaojuan Mao; Yuanbo Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.

Paper Details

Date Published: 3 December 2014
PDF: 6 pages
Proc. SPIE 9297, International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors, 929725 (3 December 2014); doi: 10.1117/12.2073224
Show Author Affiliations
Gang Li, Mechanical Engineering College (China)
Li Li, Mechanical Engineering College (China)
Yezhou Jin, CNGC North Laser Technology Group Co.,LTD (China)
Xinhua Sun, CNGC North Laser Technology Group Co.,LTD (China)
Shaojuan Mao, Mechanical Engineering College (China)
Yuanbo Wang, Mechanical Engineering College (China)


Published in SPIE Proceedings Vol. 9297:
International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors
Jurgen Czarske; Shulian Zhang; David Sampson; Wei Wang; Yanbiao Liao, Editor(s)

© SPIE. Terms of Use
Back to Top