Share Email Print
cover

Proceedings Paper

Research on the aero-thermal effects by 3D analysis model of the optical window of the infrared imaging guidance
Author(s): Bo Xu; Lin Li; Ying Zhu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Researches on hypersonic vehicles have been a hotspot in the field of aerospace because of the pursuits for higher speed by human being. Infrared imaging guidance is playing a very important role in modern warfare. When an Infrared Ray(IR) imaging guided missile is flying in the air at high speed, its optical dome suffers from serious aero-optic effects because of air flow. The turbulence around the dome and the thermal effects of the optical window would cause disturbance to the wavefront from the target. Therefore, detected images will be biased, dithered and blurred, and the capabilities of the seeker for detecting, tracking and recognizing are weakened. In this paper, methods for thermal and structural analysis with Heat Transfer and Elastic Mechanics are introduced. By studying the aero-thermal effects and aero-thermal radiation effects of the optical window, a 3D analysis model of the optical window is established by using finite element method. The direct coupling analysis is employed as a solving strategy. The variation regularity of the temperature field is obtained. For light with different incident angles, the influence on the ray propagation caused by window deformation is analyzed with theoretical calculation and optical/thermal/structural integrated analysis method respectively.

Paper Details

Date Published: 21 November 2014
PDF: 10 pages
Proc. SPIE 9296, International Symposium on Optoelectronic Technology and Application 2014: Advanced Display Technology; Nonimaging Optics: Efficient Design for Illumination and Solar Concentration, 92960G (21 November 2014); doi: 10.1117/12.2072390
Show Author Affiliations
Bo Xu, Beijing Institute of Technology (China)
Lin Li, Beijing Institute of Technology (China)
Ying Zhu, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 9296:
International Symposium on Optoelectronic Technology and Application 2014: Advanced Display Technology; Nonimaging Optics: Efficient Design for Illumination and Solar Concentration
Byoungho Lee; Ting-Chung Poon; Yongtian Wang; Yong Bi; Roland Winston; Yi Luo, Editor(s)

© SPIE. Terms of Use
Back to Top