Share Email Print
cover

Proceedings Paper

Infrared identification of internal overheating components inside an electric control cabinet by inverse heat transfer problem
Author(s): Li Yang; Ye Wang; Huikai Liu; Guanghui Yan; Wei Kou
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The components overheating inside an object, such as inside an electric control cabinet, a moving object, and a running machine, can easily lead to equipment failure or fire accident. The infrared remote sensing method is used to inspect the surface temperature of object to identify the overheating components inside the object in recent years. It has important practical application of using infrared thermal imaging surface temperature measurement to identify the internal overheating elements inside an electric control cabinet. In this paper, through the establishment of test bench of electric control cabinet, the experimental study was conducted on the inverse identification technology of internal overheating components inside an electric control cabinet using infrared thermal imaging. The heat transfer model of electric control cabinet was built, and the temperature distribution of electric control cabinet with internal overheating element is simulated using the finite volume method (FVM). The outer surface temperature of electric control cabinet was measured using the infrared thermal imager. Combining the computer image processing technology and infrared temperature measurement, the surface temperature distribution of electric control cabinet was extracted, and using the identification algorithm of inverse heat transfer problem (IHTP) the position and temperature of internal overheating element were identified. The results obtained show that for single element overheating inside the electric control cabinet the identifying errors of the temperature and position were 2.11% and 5.32%. For multiple elements overheating inside the electric control cabinet the identifying errors of the temperature and positions were 3.28% and 15.63%. The feasibility and effectiveness of the method of IHTP and the correctness of identification algorithm of FVM were validated.

Paper Details

Date Published: 20 November 2014
PDF: 7 pages
Proc. SPIE 9300, International Symposium on Optoelectronic Technology and Application 2014: Infrared Technology and Applications, 930002 (20 November 2014); doi: 10.1117/12.2072030
Show Author Affiliations
Li Yang, Naval Univ. of Engineering (China)
Ye Wang, Naval Univ. of Engineering (China)
Huikai Liu, Naval Univ. of Engineering (China)
Guanghui Yan, Naval Univ. of Engineering (China)
Wei Kou, Naval Univ. of Engineering (China)


Published in SPIE Proceedings Vol. 9300:
International Symposium on Optoelectronic Technology and Application 2014: Infrared Technology and Applications
Mircea Guina; Haimei Gong; Zhichuan Niu; Jin Lu, Editor(s)

© SPIE. Terms of Use
Back to Top