Share Email Print
cover

Proceedings Paper

Room temperature operation of 2.67-mJ pulse LD end pumped Q-switched Tm:YAG laser
Author(s): Xuedi Song; Chunting Wu; Xinyu Chen; Kai Yu; Guangyong Jin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Due to 2 μm band in the absorption of water and CO2, the diode pumped solid state lasers with wavelength around 2 μm have important applications in laser medicine and remote sensing, such as it can be used as a scalpe or a light source of Coherent Doppler Wind Lidar and Differential Absorption Lidar. In the recently years, scientists have done much work on the development of such lasers. There’re many reports on continuous Tm:YAG laser. However, the study on Q-switched Tm:YAG laser, which is more useful in applications, was very rare. As the light source of Coherent Doppler Wind Lidar, large energy and wide pulse width is desired. Current reports mostly adopted CW pumped source, but it would make a mount of heat. Pulse pumping method could reduce the heat accumulation and improve the heat stability of the laser. How to improve the single pulse energy was the focus of current study. In this paper, a single end bonding Tm:YAG crystal with Tm3+ doping concentration of 3.5at.% was used. Acousto-optic (AO) Q-switched (GOOCH and HOUSEGO QS041-10M-HI8) operation was adopted in our experiment. In the repetition frequency of 100Hz, a maximum single energy of 2.67 mJ (measured by Ophir 30A-BB) and the narrowest pulse width of 149 ns (measured by Vigo PCI-3TE-12 detector) were achieved at room temperature. The M2x was 1.31 and the M2y was 1.35 (measured by Spiricon Pyrocam-III). Tm:YAG laser was developed by using a pulse diode pumped L shape resonant cavity. The transmittance of the curve output mirror was 4% and the curvature radius of which was 300 mm. The output center wavelength of the laser was measured to be 2013.5 nm (measured by YOKOGAWA AQ6375).

Paper Details

Date Published: 18 December 2014
PDF: 6 pages
Proc. SPIE 9295, International Symposium on Optoelectronic Technology and Application 2014: Laser Materials Processing; and Micro/Nano Technologies, 929512 (18 December 2014); doi: 10.1117/12.2071604
Show Author Affiliations
Xuedi Song, Changchun Univ. of Science and Technology (China)
Chunting Wu, Changchun Univ. of Science and Technology (China)
Xinyu Chen, Changchun Univ. of Science and Technology (China)
Kai Yu, Changchun Univ. of Science and Technology (China)
Guangyong Jin, Changchun Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 9295:
International Symposium on Optoelectronic Technology and Application 2014: Laser Materials Processing; and Micro/Nano Technologies
Guofan Jin; Songlin Zhuang; Jennifer Liu, Editor(s)

© SPIE. Terms of Use
Back to Top