Share Email Print
cover

Proceedings Paper

An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras
Author(s): Liqiang Wang; Zhen Liu; Zhonghua Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation robustness and accuracy of the fundamental matrix. Finally, we take an experiment for computing the relationship of a pair of stereo cameras to demonstrate accurate performance of the algorithm.

Paper Details

Date Published: 24 November 2014
PDF: 10 pages
Proc. SPIE 9301, International Symposium on Optoelectronic Technology and Application 2014: Image Processing and Pattern Recognition, 930113 (24 November 2014); doi: 10.1117/12.2070973
Show Author Affiliations
Liqiang Wang, BeiHang Univ. (China)
Zhen Liu, BeiHang Univ. (China)
Zhonghua Zhang, National Institute of Metrology (China)


Published in SPIE Proceedings Vol. 9301:
International Symposium on Optoelectronic Technology and Application 2014: Image Processing and Pattern Recognition
Gaurav Sharma; Fugen Zhou; Jennifer Liu, Editor(s)

© SPIE. Terms of Use
Back to Top